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Navigating phase space transport with the origin-fate map
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We introduce and demonstrate the usage of the origin-fate map (OFM) as a tool for the detailed investigation
of phase space transport in reactant-product-type systems. For these systems, which exhibit clearly defined start
and end states, it is possible to build a comprehensive picture of the lobe dynamics by considering backward and
forward integration of sets of initial conditions to index their origin and fate. We illustrate the method and its
utility in the study of a two degrees of freedom caldera potential with four exits, demonstrating that the OFM
not only recapitulates results from classical manifold theory but even provides more detailed information about
complex lobe structures. The OFM allows the detection of dynamically significant transitions caused by the
creation of new lobes and is also able to guide the prediction of the position of unstable periodic orbits (UPOs).
Further, we compute the OFM on the periodic orbit dividing surface (PODS) associated with the transition
state of a caldera entrance, which allows for a powerful analysis of reactive trajectories. The intersection of the
manifolds corresponding to this UPO with other manifolds in the phase space results in the appearance of lobes
on the PODS, which are directly classified by the OFM. This allows computations of branching ratios and the
exploration of a fractal cascade of lobes as the caldera is stretched, which results in fluctuations in the branching
ratio and chaotic selectivity. The OFM is found to be a simple and very useful tool with a vast range of descriptive
and quantitative applications.
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I. INTRODUCTION

The study of phase space transport in dynamical systems
has a rich and varied history. This has been demonstrated in
applications ranging from scattering dynamics in astronomy
[1,2] and beyond [3], to turbulent plasma flows in the context
of shocks [4] and planetary magnetosphere chorus emissions
[5], and chemical potentials [6,7]. Identifying basins of at-
traction in multistable systems, i.e., the ultimate forward time
fate of sets of initial conditions [8], has drawn attention from
multiple angles [9], including considering measures of chaos
based on fractality of basin boundaries [10,11], notions of
basin stability from volumes of basins of attraction [12], and
basin entropy as a measure of the unpredictability of the final
state of a system [13,14]. Beyond only forward time attractors,
in many systems there is a clear definition of an origin state
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as well as the final region, where it can be useful to study this
phenomenon of interstate transport, particularly in chemical
reaction dynamics where reactant and product states are of
note [15,16]. In such cases, where the phase space can be
partitioned into distinct regions constituting possible origin
states, possible final fate states, and an intermediate transient,
then the language of symbolic dynamics can be effective for
describing the transitions between these states [17,18]. This
allows a continuous dynamical system to be described in
terms of the qualitatively significant areas of phase space,
giving a practical discretization of phase space transport by
attributing separate labels to each of these regions, and allo-
cating this label to all trajectories within the region.

In a wide variety of systems we can further take advantage
of the theory of lobes which underlie long-time dynamics,
by considering intersections of stable and unstable invari-
ant manifolds corresponding to periodic orbits [19]. With
these manifolds partitioning the phase space into classes of
trajectories having specific behaviors, this theory naturally
complements the symbolic dynamics approach by proposing
potentially significant regions or states to consider sym-
bolically. To compute these manifolds, one can implement
classical methods using the eigenvectors of periodic orbits,
or where applicable simpler techniques such as the ridges
of Lagrangian descriptor gradients [20–22]. This manifold
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approach to phase space transport has for example been used
to study eddies in fluid flows [23], to compute branching ratios
in chemical reactions [24], and explored in the context of
stochastic flows [25].

While applicable to a diverse array of physical problems,
the modeling of chemical reactions is a prime example of the
utility of these transport analyses, particularly due to tran-
sition state theory [26,27]. The mathematical description of
this transition state leads to a dividing surface, or surface of
no return, which can be directly constructed in some models
[6]. Applying these techniques to a variety of potential energy
surfaces has led to an increased understanding of chemical
dynamics [28–32].

In this work, we introduce the notion of the origin-fate map
(OFM) as a direct method for exploring phase space transport,
validate it by comparing to previous results, and explore some
of its capabilities in the context of a simple chemical reaction
potential model. Section II defines the OFM and how it is
computed, and in Sec. III we show that the method can be
used to reproduce and extend previous findings in a caldera
potential. Section IV describes the advantage of considering
the map on a dividing surface of the reaction potential, and
provides further illustration of the qualitative and quantitative
insights it provides. Finally, Sec. V concludes the work by
summarizing the method and some of its use cases.

II. THE ORIGIN-FATE MAP

An inherent difficulty with any manifold-based transport
characterization technique is the problem of correctly clas-
sifying the various manifold lobes. Similarly, in situations
where the manifolds may be complex and difficult to extract,
classifying regions of phase space based on their transport
characteristics is challenging. What we propose here is a
simple method to identify asymptotic behaviors of trajectories
through an origin-fate map for reactant-product type systems,
extending ideas from both lobe dynamics and studies of basins
of attraction. Fundamentally, for a given initial condition,
typically on a surface of section, we can identify an ori-
gin, associated with an initial reactant region, for instance
an attractor, a potential well, or entry channel, and a fate,
associated with the final product region or exit channel. To
make the generality of this approach clear, we will adopt the
term “origin-fate system” as an umbrella term for any dynam-
ical system satisfying this criterion of having clear origin and
fate states. The intuition of a chemical system that progresses
from reactants to products is applicable, but the technique
works just as well in scattering problems or other nonchemical
systems. We can directly identify the origin through backward
integration and the fate via forward integration. We then as-
sociate an origin-fate index with each of these points on the
surface of section, consisting of two numbers indexing the
origin and fate channels of the trajectory. We note that using
forward integration to investigate the fates of trajectories is
well explored, particularly through basins of attraction (see,
for instance, Refs. [1,8,33]), but to the best of our knowledge
no comprehensive, detailed methods have been proposed to
deal with both origins and fates of trajectories.

For simplicity and concreteness, we present and describe
the method in the context of a specific Hamiltonian caldera

model satisfying the reactant-product criterion. This caldera
potential energy surface takes motivation from organic chem-
ical reactions, where it has been seen to describe several
rearrangements of molecules [34–37]. We note that in gen-
eral, the use of simplified models necessarily requires some
approximation of the complex molecular interactions that un-
derlie chemical reactions. In particular, the construction and
use of detailed free energy surfaces is a much more complex
problem when quantum effects are significant, which funda-
mentally alter fine-grained characteristics [38], and require
more complex computations [39].

The notions discussed here are straightforwardly extensible
to different open Hamiltonian models with escapes, and to
dissipative systems with forward- and backward-time attrac-
tors; we emphasize that the technique works for Hamiltonian
and non-Hamiltonian systems alike. The Hamiltonian of this
caldera system is given in terms of a unit mass test particle
with position (x, y) and momentum (px, py) by [16]

H(x, y, px, py) = p2
x

2
+ p2

y

2
+ V (x, y),

V (x, y) = c1(λ2x2 + y2) + c2y

− c3(λ4x4 + y4 − 6λ2x2y2). (1)

In Eq. (1), V (x, y) describes a potential energy surface with
two higher-energy index 1 saddles corresponding to entrances
to the caldera, a central minimum, and two lower-energy index
1 saddles corresponding to exits. The value of the Hamilto-
nian is the overall energy of the system E . The parameter λ

controls the stretching of the surface, with λ = 1 giving the
unstretched potential, and decreasing values of λ resulting
in increased stretching of the potential energy surface. To
maintain the four-escape structure, the parameters are taken
as c1 = 5, c2 = 3, c3 = −0.3 as in Refs. [40,41]. Chemically
relevant trajectories enter and exit through one of the four
corners defined by the saddles and bounded by isoenergetic
surfaces. The only alternative is trajectories which are trapped
within the central basin of the caldera in either forward or
backward time. The unstretched potential energy surface is
shown in Fig. 1, demonstrating these features: The four escape
channels, the central well, and the y asymmetry creating the
higher- and lower-energy channels.

In the caldera, we assign origin/fate indices to the four
channels as per Fig. 2, moving clockwise from top left. The
top left is indexed as 1, where we have the top left saddle
(TLS), the top right indexed 2 (TRS), the bottom right indexed
3 (BRS), and the bottom left indexed 4 (BLS). For example,
if we had a trajectory that enters through the top right channel
and then exits through the bottom left, it would be indexed as
2–4: It has origin channel 2 and fate channel 4. We note that
entering or leaving through one of these channels corresponds
to a particular symbolic dynamics state, and consequently the
origin-fate index essentially describes a symbolic trajectory.

This allows us to index each possible combination of
origin-fate channels using 16 identifiers, with one additional
identifier for the case where (up to the finite integration
time) the trajectory remains trapped in the caldera in either
the forward or backward integration. By assigning colors to
each of these identifiers, it is possible to plot the surface of
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FIG. 1. The unstretched (λ = 1) caldera potential energy surface
V (x, y) from Eq. (1), showing the four exit channels at each corner
and the central well. The contours of the potential are shown in black
below the 3D surface.

section colored by the origin-fate index of each point. While
this explanation refers to the specific case of the caldera
with four entry and exit channels, clearly similar descriptions
would hold for a general system with n possible origins and k
possible fates, requiring n × k colors.

The OFM algorithm for a given model with set parameters
can be summarized in the following steps.

(1) Choose a surface on which to take a discrete grid of
initial conditions.

(2) For each initial condition
(i) Integrate forward until it reaches an ending fate

state, or reaches the cutoff time.
(ii) Integrate backward until it reaches a starting origin

state, or reaches the cutoff time.
(iii) Record the origin-fate index based on these results.

(3) For low-dimensional visualization: Color the surface
based on the origin-fate indices.

(4) For quantification of trajectory behaviors: Compute
the fraction of initial conditions with each origin-fate index.

The definition of an origin/fate state will need to be de-
cided based on the properties of the system, and whether this
state is an attractor, escape channel, spatially localized region,
etc.

III. TRANSPORT IN A SYMMETRIC CALDERA

As a combined validation, demonstration, and explanation
of the OFM, we consider the caldera potential (1) which
has been explored extensively as a transition-state model for
chemical reactions with two reactant states and two product
states in a symmetric [40,42] and asymmetric [43] formula-
tion. In the unstretched caldera with λ = 1, the phenomenon
of “dynamical matching” is observed, which means that all
reactive trajectories cross the caldera diagonally—in the no-
tation of origin-fate indices, the only possible reactive cases
are 1–3 and 2–4 (cf. the labels in Fig 2). This behavior corre-
sponds to transverse intersections of unstable manifolds from
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FIG. 2. The contours of the unstretched (λ = 1) caldera potential
(1) as in Fig. 1, marked with the origin-fate indices. So the top left
channel is indexed as channel 1, the top right indexed 2, the bottom
right indexed 3, and the bottom left is indexed 4.

the unstable periodic orbits (UPOs) of the top saddles with
the stable manifolds of the UPOs of the bottom saddles. It
has been shown that as this potential surface is stretched by
decreasing λ, lobes are formed by the unstable manifold of
the UPO corresponding to the TRS and stable manifolds from
periodic orbits in the central minimum [40,42]. The formation
of these lobes result in the breaking of dynamical matching,
the appearance of trajectories that enter from the top right
(left) and leave through the bottom right (left)—i.e., allowing
1–4 and 2–3 origin-fate indices. Here, we demonstrate that the
OFM shows this result directly, while additionally providing
a more detailed description of the lobe structures responsible
for phase space transport.

In Fig. 3(a), we see a visualization of the OFM for the
caldera potential with energy E = 29, on the surface of sec-
tion defined by y = 1.88409, py > 0 (after Ref. [42]). A
maximum integration time of τ = 20 was used, i.e., inte-
grating until t = τ or the trajectory exits the caldera region.
Following previous work [42], we simply consider a trajectory
to have left the caldera if |y| > 6, although more nuanced
approaches can be adopted. When this boundary is reached,
the origin or fate index is assigned based on the coordinates
at the boundary, i.e., (x < 0, y > 0) corresponds to channel
1, (x > 0, y > 0) corresponds to channel 2, (x > 0, y < 0)
corresponds to channel 3, and (x < 0, y < 0) corresponds to
channel 4. A grid of 800 × 800 initial conditions is used for
Fig. 3(a), with some initial conditions excluded due to being
impossible to access at this energy.

First, this shows how the OFM clearly delineates distinct
behaviors, with the color of an initial condition corresponding
to its origin [see the color bar in Fig. 3(a)], and the gradient
of the intensity denoting the fate. Distinct lobes are visible on
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FIG. 3. (a) The OFM using an integration time of τ = 20 for
the Poincaré surface of section at y = 1.88409, py > 0 of the un-
stretched (λ = 1) caldera for energy E = 29 showing a complex
array of structures, with the positive py resulting in a majority of
trajectories entering from below (indices 3 and 4). (b) Two repre-
sentative trajectories in configuration space, showing the two points
marked on the surface of section in panel (a). Black lines correspond
to the energy boundary.

the left and right sides of the plot, with simple structures on
the edges of the filled space and more complex entanglements
in the central region, strongly reminiscent of the fractal prop-
erties demonstrated by the Smale horseshoe [44]. Figure 3(b)
shows two of the distinct origin-fate behaviors by following
the evolution of the initial conditions through configuration
space. These initial conditions are indicated by the colored
points on the surface of section in Fig. 3(a). Essentially, this
encapsulates the utility of the OFM—instead of requiring
exhaustive trial and error tests of individual initial conditions,
we can clearly visualise the pertinent behaviors in a symbolic
dynamics sense.

Further, the transport characteristics of this caldera poten-
tial have already been studied through manifold dynamics,
with both classical methods [40], and Lagrangian descrip-
tors [42]. To provide a clear comparison with these previous
results, and to demonstrate the practicality of the OFM in
adding to the existing tools, we consider the stretching of the

FIG. 4. Similar to Fig. 3, but for the critical stretching of the
potential, λ = 0.778, where the first signs of breaking dynamical
matching appear.

potential surface by decreasing the value of λ in Eq. (1). When
λ attains its critical value of λ ≈ 0.778, it has been observed
that the unstable manifold of the UPO corresponding to the
TRS is intersected by manifolds from periodic orbits in the
central region, resulting in a breaking of dynamical matching
(i.e., reactive trajectories no longer conform solely to 1–3 or
2–4 classes) [40,42]. In Fig. 4 we show the OFM for the
same surface of section as in Fig. 3, at this critical value.
There are several features that are immediately apparent—the
greater proportion of trapped trajectories (purple regions) for
this finite time (τ = 20), and the expansion of the “complex
central region,” as manifolds from periodic orbits in the center
reach further in the x direction. We note that a longer time
can be used to reduce the number of trapped trajectories, or
the forward/backward nature of the trapping could also be
directly tracked if this is of interest.

What is only slightly apparent at this scale is the expected
intersection of manifolds resulting in the breaking of dynami-
cal matching, and the creation of 2–3 (lighter green color) or
1–4 (deep red color) origin-fate classes. To properly investi-
gate this, we consider a zoomed in region of the bottom right
corner of the surface of section in Fig. 4, near the small green
2–4 lobe. Figure 5(a) shows the OFM of this zoomed in region
(using a finer grid of 1500 × 1500 initial conditions), showing
exactly the manifold-predicted behavior: There are lobes of
broken dynamical matching forming, with a 2–3 origin-fate
index. Here we can directly observe that these lobes are
complex, as there are rapidly alternating origin-fate regions
described by manifolds of higher-order periodic orbits. In fact,
as will be discussed later, there is a chaotic fractal structure of
manifolds in this region, resulting in unpredictable transport
effects.

Since we are primarily concerned only with dynamical
matching and the breaking thereof, a natural way to adapt
the OFM is to color initial conditions on the surface based
on these classifications—creating a version of the map we
will call the classification OFM (COFM) which focuses in
on selected origin-fate pairs. Concretely, we will consider
only four relevant, or “active” cases: Right-left dynamical
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FIG. 5. The OFM for the region of the Poincaré surface of section in Fig. 4 where the lobes appear. (a) The full map, showing all origin-fate
indices. (b) The COFM, where we reduce the colors to behaviors of interest—right-right broken dynamical matching (yellow), right-left
dynamical matching (green), left-left broken dynamical matching (red), and left-right dynamical matching (orange). Other behaviors are
colored gray. (c) The same as panel (a), but with the manifolds overlaid as black lines and two specific trajectories marked as red and blue
points (see Fig. 6). (d) The same as panel (b) with the manifolds overlaid, demonstrating the precise correspondence between the manifold
lobes and the different transport behaviors.

matching (R-L DM, 2–4), left-right dynamical matching
(L-R DM, 1–3), right-right broken dynamical matching (R-R
BDM, 2–3), and left-left broken dynamical matching (L-L
BDM, 1–4). All other behaviors will be ignored by simply
coloring those initial conditions gray. Figure 5(b) shows this
COFM where the behavior of most interest, the R-R BDM,
is shown in yellow. Here our attention is clearly drawn to
the key characteristics of the complex lobes. While exactly
the same information is contained here as in the full OFM in
Fig. 5(a), the removal of extraneous distracting colors makes
the results more clearly comprehensible, and using the COFM
is likely the best path for visualizations when there are a priori
behaviors of particular interest.

Crucially, we are able to show that the OFM correctly
reproduces, and in fact enhances, the previous findings us-
ing manifolds. In Figs. 5(c) and 5(d) we see the OFM and
COFM now overlaid with the manifolds computed through
Lagrangian descriptor gradients, demonstrating that the

colored lobes of the OFM are delineated by these manifolds.
The OFM directly provides the classification of each of these
lobes, without the need for trial and error. Further, it re-
veals the complex sublobe structures that require computation
of higher-order manifolds to see through classical methods,
allowing us to understand the detailed dynamics without dif-
ficult manifold identification.

To illustrate the complex and sensitive dynamics, two par-
ticular initial conditions in different lobes are taken from
the OFM of the caldera at the critical stretching point
λ = 0.778, marked by red and blue points, respectively,
in Fig. 5(c), and their full configuration space evolutions
are shown in Fig. 6 by going forward and backward in
time. The two initial conditions are taken as (x, y, px, py) =
(2.867, 1.88409,−1.365, 0.86563646) for the 2–3 case (red),
and (2.869, 1.88409,−1.365, 0.8527248) for the 2–4 case
(blue). While the trajectories are initially almost identical after
crossing the surface of section at y = 1.88409, they eventually

024211-5



MALCOLM HILLEBRAND et al. PHYSICAL REVIEW E 108, 024211 (2023)

−2 0 2
−3

−2

−1

0

1

2

3

FIG. 6. The configuration space projection of two trajectories
that cross the surface of section shown in Fig. 5 in the lobes formed
by the unstable invariant manifold corresponding to the UPO of the
TRS and the manifolds from the central area. The contours of
the potential are shown in gray, with the black lines demarcating
the energy boundary. The red trajectory corresponds to a point in
a 2–3 lobe, and the blue trajectory to a point in the 2–4 lobe. The
initial conditions are marked by (overlapping) red and blue dots. Note
that the initial part of the forward evolution also overlaps completely
on this plot. The arrows indicate the forward-time direction of the
motion.

diverge completely and exit through different channels, as
indicated by their respective lobes in the OFM. This again
emphasizes a principal use case for the OFM—essentially
automating the identification of these very narrow sublobes
of different behaviors.

Another important note is the identification of fractal
regions in the transport lobes. If we consider only the tra-
jectories emanating from the top right (i.e., the green right
hand side in Fig. 5), then the OFM simply describes the exit
channels as attractors, and we can directly identify the re-
gions of infinitely dense manifolds as fractal boundaries to the
basins of attraction of these channels. These fractal boundaries
are evident from the interleaved yellow and green regions of
Fig. 5(b), where the yellow color corresponds effectively to
the basin of attraction of the bottom right, and the green
to the basin of the bottom left. Consequently, we are able
to observe that even in this simple model, there is a chaotic
element present when attempting to predict the ultimate
fate of particular initial conditions. The numerical confirma-
tion of this sensitive nature is much more directly feasible
through the OFM than any manifold-based attempts, where
it becomes progressively more difficult to find or compute
the higher-order manifolds responsible for the dense fractal
structure.

IV. TRANSPORT FROM THE PERIODIC ORBIT
DIVIDING SURFACE

A significant decision in any method of classifying trans-
port dynamics or basins of attraction is how to choose the
(hyper)surface on which to classify initial conditions. As in
the above discussion in Sec. III, often a well-chosen phase
space slice at a particular coordinate yields an effective
Poincaré surface of section. However, the specific context of
chemical reaction theory suggests a natural choice for the
surface—the dividing surface, which exists at the transition
state, separating “reactant” (origin) phase space from “prod-
uct” (fate) phase space. As this dividing surface is a surface of
no return, which satisfies a local no-recrossing property, once
a trajectory crosses the surface it cannot exit via the channel it
entered from without an extended journey through the phase
space.

In the particular context of potentials with index 1 saddles
(such as the caldera considered here), we are able to construct
the dividing surface in phase space through finding UPOs cor-
responding to each saddle, known as periodic orbit dividing
surfaces (PODS) [45]. In configuration space, the projection
of these UPOs provides a direct dividing surface between
reactants and products [46–48]. In phase space, the dividing
surface of a particular UPO is given by the constant-energy
hypersurface in phase space bounded by the position coordi-
nates of the UPO. Explicitly, to construct the PODS we can
consider every point along the UPO in configuration space,
and sweep out every energetically permitted set of momentum
values at this point. The union of all these phase space points
constitutes the PODS.

In principle, this PODS can then be used as a surface of
section in the phase space, with notable benefits. In particular,
if we wish to study all reactive trajectories emanating from,
or exiting through, a certain channel, then we can compute
the OFM on the corresponding dividing surface and we are
guaranteed to catch every relevant trajectory. This provides
an unambiguous context for quantifying branching ratios or
scattering, the fraction of trajectories that correspond to cer-
tain origin-fate behaviors, by giving a set of initial conditions
that include only reactive trajectories, and in fact include all
reactive trajectories [49–51].

For the caldera, we can compute the PODS corresponding
to each saddle, and extend the analysis performed on the
constant y surface of section. In practice, this consists of
two steps—first, identifying and finding the UPO, and then
computing origin-fate indices for every initial condition lying
on the dividing surface.

A. Finding periodic orbits with the OFM

The first step is aided significantly by studying the OFM
on a constant-coordinate surface of section. It is known that
the stable and unstable invariant manifolds of a given UPO
partition the dynamics [19], and the OFM gives precisely
this asymptotic symbolic partition (i.e., the origin-fate index).
Thus, by inspection of the OFM on a Poincaré surface of
section, we can in fact identify potential UPOs which inter-
sect the surface. If there is a single intersection of the UPO
with the surface of section, then this intersection will appear
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FIG. 7. (a) The OFM for the unstretched caldera with E = 29,
on the surface of section y = 2, py > 0. (b) An enlargement of the
rectangular region marked in panel (a), showing the four distinct
quadrants of origin-fate behaviors characteristic of an unstable pe-
riodic orbit (see text).

as a “corner node,” a point where the intersection of stable
and unstable manifolds results in four distinct quadrants of
origin-fate behaviors, corresponding to the particular UPO.
Here it is important to recall that crossing an unstable in-
variant manifold results in a change in the fate index, as
the unstable manifolds govern forward-time transport, and
correspondingly crossing a stable invariant manifold results
in a change in the origin index. For example, in the caldera
the UPO corresponding to the TRS (recall this origin-fate
channel is indexed 2) can be identified by taking a surface
of section and finding such a corner node where two neigh-
boring quadrants have origin index 2, including one quadrant
that also has fate index 2. The four quadrants, as one rotates
around the UPO intersection point, will thus be indexed 2–X ,
X–X , X–2, 2–2, where X represents the index of the other
channel. This is demonstrated in the OFM segment on the
surface of section y = 2, py > 0, Fig. 7 (both panels have a
grid of 1000 × 1000 initial conditions), where we see that due
to dynamical matching the two channels involved here are 2
and 4. The coloring technique of the OFM makes the quadrant

matching in Fig. 7(b) clear, since by rotating around the corner
node, either the color or the gradient changes, but not both.
These correspond to fate changes (color), or origin changes
(gradient), from the manifold crossing. Thus, we see if we
start in the lower right quadrant, and rotate clockwise, we
have the sequence described above, 2–4, 4–4, 4–2, 2–2. This
plot amply demonstrates the point that we are able to make a
very accurate initial guess for the position of the UPO on this
surface of section, given by the corner node of this coloring,
which then enables a root-finding approach to precisely locate
the UPO.

B. Using the OFM on a dividing surface

Once the UPO has been found, the computation of the
OFM is relatively straightforward in two degrees of freedom.
In this model, the coordinates of the UPO give a fixed relation-
ship between x and y (in practice we have a list of coordinate
pairs from our UPO algorithm), defining a surface of section.
With this we can follow the algorithm described above, where
for each of these (x, y) pairs we can compute the origin-fate
indices on a grid of energetically allowed momenta. This
procedure yields the OFM on a surface, in exactly the same
way as we would have at a constant coordinate.

In Fig. 8 we show the OFM computed on the PODS
corresponding to the TRS, with E = 29, py < 0, and pre-
sented in the x − px projection (recall that y is defined by
x). In these plots a grid of 1110 × 2000 initial conditions
is used, where the x initial coordinates are defined by the
UPO algorithm. Figures 8(a) and 8(b) show the OFM and
COFM respectively for the unstretched caldera potential. Here
the classifications are restricted to the two possible reactive
behaviors for trajectories crossing this PODS—right to left
dynamical matching, and right to right broken dynamical
matching. The OFM [Fig. 8(a)] clearly shows the two natural
behaviors for the PODS: Reactive trajectories coming from
channel 2 and exiting across the caldera via channel 4, and
“antireactive” trajectories tracing out the opposite journey,
starting from channel 4 and leaving through channel 2. While
not shown here, if the other half of the surface with py > 0 is
included, then exactly half of this full surface corresponds to
2–4 dynamics, and the other half to 4–2.

Now stretching the caldera past the critical value, to λ =
0.75, we note the appearance of other dynamics on the PODS
in Figs. 8(c) and 8(d). Thus, we see that the intersection of
manifolds seen on the constant y surface of section in Fig. 5
directly implies the existence of manifold lobes on the PODS.
If we think slightly differently about its definition, then the
PODS allows us to consider the surface in phase space where
one pair of stable and unstable manifolds intersect (of course
corresponding to the particular UPO under study). Conse-
quently, the intersection of any other manifold with either of
these two specific manifolds anywhere in the phase space will
necessarily result in the “invasion” of the PODS by these lobes
of different asymptotic behaviors. However, by restricting our-
selves to this PODS, we automatically exclude behaviors that
do not relate to the chosen channel, either through entrance
or exit. Thus, we see that the complex yellow lobe appearing
in the COFM of Fig. 5(d) corresponds to the yellow lobe in
Fig. 8(d).
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FIG. 8. The x − px projection of the PODS associated with the top right saddle with E = 29 and py < 0, colored according to the origin-
fate map. Panels (a) and (c) show the full map, with λ = 1 and λ = 0.75, respectively. Panels (b) and (d) show the classification map for these
λ values, restricting options to trajectories across the caldera, 2–4 (R-L DM), and trajectories breaking dynamical matching, and exiting to the
right 2–3 (R-R BDM). The rectangle in panel (d) demarcates the region shown in more detail in Fig. 9.

It is worth emphasizing that the very simplicity of these
OFM plots on the PODS in Fig. 8 reflects the significant
advantage of considering the dynamics on such a PODS.
By essentially choosing a “good coordinate system,” we are
able to see relevant behaviors of interest (and those behaviors
only) very clearly. A comparison of Fig. 3(a) with Fig. 8(a),
and Fig. 4 with Fig. 8(c), makes this point clearly—while
these figures show the same system at the same (or similar
in the stretched case) parameters, the almost overwhelming
complexity of the constant y surface of section is completely
eliminated in the PODS representation. Note that while the
λ values are slightly different for Fig. 4 and Fig. 8(c),
these show the same qualitative regimes. Consequently, we
can see that to get a snapshot of the full dynamics of the
system, we should consider some nonspecific surface of sec-
tion such as in Fig. 3(a), while the PODS is much more useful
as a blank canvas on which to illustrate the development of
complex dynamics resulting from the variation of parameters.
In the system studied here, this difference is between having to
carefully examine Fig. 4 for the lobe formation, and seeing the

breaking of dynamical matching clearly appear on the PODS
in Figs. 8(c) and 8(d).

On the PODS, we are also able to directly compare the
lobes shown by the OFM and those formed by the stable
and unstable manifolds computed through the Lagrangian
descriptors, in the same way as for the surface of section in
Fig. 5. Figure 9 shows the COFM on the PODS associated
with the TRS, overlaid with the manifolds in black (a grid
of 2000 × 2000 points is used here to capture the details).
For clarity, the figure zooms in on the relevant boundary re-
gion where the broken dynamical matching behavior becomes
evident. Here the correspondence between the two methods
for finding these transport lobes is clear once again, with
the manifolds outlining the different regions identified by the
OFM. The fractal boundary of the lobes are visible in both
the manifold and OFM visualizations, but the depth of the
fractality is much more readily apparent from the OFM. In
addition, finding these higher-order manifolds responsible for
the more complex transport mechanisms requires longer time
Lagrangian descriptor computations (or extremely difficult
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FIG. 9. A zoomed in perspective of the PODS depicted in
Fig. 8(d), associated with the top right saddle with E = 29 and
λ = 0.75, showing the classification origin-fate map. The map is
overlaid with the intersection of stable and unstable manifolds with
the PODS, aligning exactly with the different trajectory behaviors.

eigenvector extrapolations from higher order periodic orbits),
whereas a short time computation from the OFM is sufficient
to completely demonstrate this phenomenon. This confirms
the utility of the OFM as both an investigative tool in its own
right, as well as in a complementary role to manifold-based
approaches.

C. Quantifying origin-fate fractions

As a further application of the OFM on the PODS, here we
demonstrate the quantitative prospects of this technique in the
context of branching ratios. The plots presented to this point
amply show that we can detect the onset of broken dynamical
matching by the appearance of particular lobes on a given sur-
face of section. However, as the OFM allocates an identifier to
each initial condition studied corresponding to its dynamical
behavior, we can easily extract the distribution of origin-fate
indices for the entire PODS, and particularly the branching
ratio of reactants emanating from the top right. In Fig. 10(a)
we see the fraction of reactive (emanating from channel 2)
trajectories corresponding to broken dynamical matching (i.e.,
2–3) as the caldera is stretched by a factor of λ. The number of
initial conditions before energetic exclusion used per λ value
varies from 1077 × 2000 to 1147 × 2000, based on the num-
ber of x coordinates recorded by the UPO algorithm. Viewed
from right to left, as λ is decreased from the neutral state,
there is a clear transition from the dynamical matching regime
of f2–3 = 0 to the mixed regime with f2–3 �= 0 as the critical
value of λ ≈ 0.778 is crossed. This fraction is the quantitative
representation of the area of the yellow lobe we see appearing
in Fig. 8(d) (although we note that the fraction is computed
using the entire PODS, not just this subsection of the x − px

projection), and the critical transition from zero to nonzero
area corresponds to the intersection of the manifolds and the
formation of the lobe on the OFM. Note however that this
use of the OFM allows us to detect this transition point with
arbitrary accuracy, without requiring manifold computations.

0.70 0.72 0.74 0.76 0.78 0.80
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0.03

0.04

f 2
−3

(b)(c)(d)(e)

(a)

FIG. 10. (a) The fraction f2−3 of reactive trajectories crossing
the PODS associated with the top right saddle that exit through
the bottom right (breaking dynamical matching), as the stretching
λ varies. [(b)–(e)] A schematic representation of lobes appearing on
the PODS that correspond to the increase and decrease in f2−3 as
λ varies. Each diagram corresponds qualitatively to the points with
labeled dashed lines in panel (a).

Moving to this quantitative approach allows for a much
more direct investigation of the effect of varying the stretching
λ. Particularly, an aspect which would not be clear from pure
inspection of the OFM plots at different λ values is the fluctu-
ation of the area of the lobes, which appears in Fig. 10(a) as
oscillations in the fraction of 2–3 trajectories. As we follow
f2–3 with decreasing λ, we see regions of increasing fraction
of 2–3 trajectories, as well as regions where f2–3 decreases
again. We can then return to the OFM and look immediately
at particular points of interest to understand the mechanism
of these fluctuations. Considering λ values on either side of
the peak near λ = 0.75 [shown by dashed lines labeled (b)–
(e) in Fig. 10(a)], we represent slightly simplified schematic
versions of the COFM on the PODS at each of these stages.
We see that the increase in fraction of 2–3 trajectories cor-
responds to a simple increase in the main area of the 2–3
lobe, evidenced by the growth seen going from panel (b) to
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panel (c). This growth does not continue smoothly however,
but is interrupted by the appearance of another 2–4 lobe inside
the main 2–3 lobe [Fig. 10(d)], the onset of which marks the
beginning of the decrease in f2–3. This 2–4 lobe grows in turn
[see the transition from panels (d) to (e) in Fig. 10], reducing
the fraction of 2–3 trajectories until eventually another 2–3
lobe appears and starts to grow itself. This fractal cascade of
lobes is repeated and corresponds to each of the phases of
the increase and decrease of f2–3. Clearly the 2–3 lobes are
overall growing more quickly, as f2–3 trends upwards as λ

decreases, but there is a continuous evolution of these very
complex lobes on the PODS corresponding to the underlying
nontrivial dynamics. Apart from being dynamically a very
interesting phenomenon, the physical interpretation of this
fractal cascade would be that as the mechanism governing the
caldera potential stretches it, the branching ratio will change
unpredictably with small changes in the stretching. A chem-
ical reaction described by this potential would consequently
yield different products for reactants with extremely similar
initial states. Here we again remark that in more general chem-
ical reactions, a free energy surface accounting for quantum
effects may be required for detailed predictions.

While this is but a single example, we emphasize that the
OFM allowed the direct study of the phase space transport
mechanisms without having to resort to an array of complex
machinery. It enables both the detection and the visualization
of this process, both of which would be virtually impossi-
ble via pure manifold considerations, or without the use of
the PODS. In particular, the flexibility of the OFM method
enables us to simply quantify and explain a variety of phe-
nomena at any parameter values of the system at hand.

As an additional comment, we note that this quantita-
tive approach scales well to higher-dimensional systems,
where visualization techniques start to break down. These
origin-fate fractions can be computed just as easily on higher-
dimensional surfaces, with only the associated increase in
numerical expense. With some care the OFM could poten-
tially also be used for the visualization of higher-dimensional
dynamics, such as in a three degrees of freedom Hamiltonian
system (or 4D discrete map) where the Poincaré surface of
section is four dimensional. For instance an adaptation of the
color and rotation method [52] or the phase space slice tech-
nique [53] could be used. Instead of coloring according to the
fourth dimension, a 3D surface could be plotted with colorings
according to the OFM, and a video used to map the fourth
dimension to time. However, especially given access to higher
dimensional dividing surfaces [54], the fraction computation
would perhaps be a good first avenue for such investigations.

V. SUMMARY AND CONCLUSIONS

The OFM is a simple and effective tool for classifying ini-
tial conditions in any kind of origin-fate or “reactant-product”
system in terms of their long-time transport characteristics.
Extending the notion of basins of attraction, the OFM uses
backward time integration to identify the origin of a given ini-
tial condition and forward time integration to find its final fate.
Indexing each point on a given surface of section according
to this origin-fate pairing enables a detailed understanding of
lobe dynamics, particularly in conjunction with conventional

manifold identification techniques. We showed in Figs. 3–6
that the OFM is able not only to reproduce results obtained
using such manifold techniques in a 2 degrees of freedom
caldera potential, but provides a much more intricate descrip-
tion of the higher order dynamics with simpler computations.
An additional advantage of the method is that it allows for the
accurate estimation of positions of unstable periodic orbits on
a surface of section in conservative systems, due to the neces-
sary distinct four-quadrant behaviors defined by the manifolds
of this orbit (Fig. 7).

As an application of the OFM, we investigated the phe-
nomenon of dynamical matching, i.e., having a one-to-one
correspondence between origin and fate channels, in an sym-
metric caldera potential, with particular note given to the
possibility of simply computing the OFM on a specific sur-
face such as the PODS corresponding to a transition state.
By exploring the transport dynamics on a PODS associated
with one entrance channel, we show that the critical stretch-
ing corresponding to the breaking of dynamical matching
is associated with the formation of complex fractal lobes
on the PODS created by intersections of manifolds (Figs. 8
and 9). Restricting the map to only specific behaviors (origin-
fate pairs) of interest, we can plot a COFM which succinctly
displays the relevant information, clearly laying out the trans-
port dynamics.

Furthermore, the origin-fate indexing allows for direct
quantification of branching ratios and similar measurements.
We demonstrated in Fig. 10 that this quantification allows
for studying the effect of various parameters on the system,
and consequently the detailed analysis of relevant cases. In
particular, this allowed us to identify a complex cascade of
fractal lobes as the mechanism producing fluctuations in the
branching ratio of the stretched caldera potential.

We believe this method has a diverse range of possible
applications, and could be useful in any system with a no-
tion of origin and fate states, be they attractors in dissipative
systems, potential wells, or exit channels in open conservative
systems. Computing the OFM on well-chosen targeted sur-
faces, such as the PODS, further enhances the power of the
method for investigating particular behaviors. Potential future
work could include exploring various systems with the OFM,
considering further details of the individual trajectories such
as winding around the central minimum or residence time in
the caldera, or a more extensive exploration of representing
higher-dimensional systems. Exploring the feasibility of the
OFM in potential energy surfaces derived from molecular
dynamics simulations is another intriguing possibility.
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